If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2=14w+3
We move all terms to the left:
5w^2-(14w+3)=0
We get rid of parentheses
5w^2-14w-3=0
a = 5; b = -14; c = -3;
Δ = b2-4ac
Δ = -142-4·5·(-3)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-16}{2*5}=\frac{-2}{10} =-1/5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+16}{2*5}=\frac{30}{10} =3 $
| -x/3+7=6 | | 4(0.2x+8)+x=80 | | 3(x+14)=2(7-2x) | | n+4.2=34.2 | | 3x=72–3xx | | 3x=72–3xx= | | x^2+3x-4=350 | | 3q-9=-27 | | 0.9(t-2.1)=3.96 | | a+173=19 | | 3x-5=8x-7,x | | 7x-11=7x-9 | | -4n+19=11 | | x^2+3x-4=266 | | x÷16=6 | | x^2+3x-4=406 | | 7-q/8=2 | | 2x-4=3(4x+2) | | 7x–1= | | 5r+14=19 | | 62=m-10 | | 22-b=42 | | (1/2)x-7=1/3(x-12) | | f=100,000(1.12)^5 | | 2(c+5)=14 | | 1/2k-7=1/3 | | 12k=25 | | A(n)=5•3n-1 | | 3.5m-4-9.3m=8.8 | | 3x2+2x2=35 | | -2x+5=-8+10 | | 1/3k-7=1/3(k-12) |